
SNAP: Symbolic Nuclear Analysis Package
A Graphical User Interface for USNRC Analytical Codes

U.S. Nuclear Regulatory Commission

What Is SNAP

SNAP Symbolic Nuclear Analysis Package

n	SNAP provides a common graphical user interface for various
 analytical codes.
n	Provides tools to assist analysts in developing input models
 for the various codes.
n	Provides tools to control job execution as well as organize
 multiple job runs.
n	Provides output visualization tools including an animation
 facility as well as publication quality plotting capabilities.

SNAP Design and Programming Features

SNAP Model Editor

n	Many analytical tools used by the USNRC use ASCII based
 input model specifications.
n	There are many different input model specification formats.
n	The SNAP model editor can read and write the various input
 files for supported codes.
n	Instead of reading through complex ASCII file specifications
 the analyst can use a simple graphical interface to build an
 input model.

SNAP Visualization Tools

n	Output from the analytical codes is usually in the form of
 large ASCII or binary files.
n	SNAP provides custom data and model animation features
n	SNAP also provides an advanced publication quality plotting
 tool so that results can be easily used in printed reports.

SNAP Execution Monitor

n	Most analytical codes need several data files for input and
 produce many output files for each analysis being done.
n	Multiple files can lead to confusion and organization problems
 for the analyst.
n	SNAP Execution Monitor can submit and track jobs so that
 file clutter is avoided.
n	Jobs can even be run and tracked on multiple machines in
 a networked environment.

How it Works

n	SNAP is written in Java and makes extensive use of
 object oriented programming features.
		v	Java is supported on most popular computer platforms.
n	SNAP uses a “plug-in” design – a standard and very popular
 code design.
		v	Permits easy extensibility to other analytical codes.
n	SNAP uses industry standard interfaces whenever possible.
		v	Reduces maintenance costs.
		v	Allows SNAP to make use of third party libraries and
 features (such as SVG and PDF file format and Derby
 embedded database).

Extensibility

n	CORBA Used for All System Component Public Interfaces
		v	Strictly Defined, Well Documented Interfaces
		v	Easy to Implement New Client Apps
n	Plug-in Design Used in Client GUI and Calculation Server
		v	Analysis Code Plug-ins
		v	Feature Plug-ins
n	JavaBean Component Design
		v	Shared Repository for Contributed Beans
		v	Custom Beans can be independently developed
n	Python Scripting
		v	User Defined Functions – Model Input Calculations
		v	Python Data Channels – Animations

Plug-ins

n	Standard API for Adding New Analysis Codes and New Features
n	Plug-in Contains All Analysis Code Specific Classes, I/O, Dialogs, etc...
n	No Modification of the Base Code Required
n	Current SNAP Code Plug-ins
		v	RELAP5
		v	TRACE
		v	CONTAIN
		v	FRAPCON3
		v	MELCOR
		v	PARCS
n	SNAP Feature Plug-ins
		v	“Wizards” can be built in plug-in form, anyone can add a
 wizard for any purpose without impacting the rest of the
 SNAP application
n	Plug-in API documentation available permitting third party
 plugin development without impact on other SNAP code
 users or developers.

JavaBean Plug-ins

n	The SNAP plug-ins themselves are built upon the industry
 standard JavaBean design
n	All model components and sub-components are JavaBean
 compliant objects, complete with BeanInfo classes and
 property editors.
n	Consistent Property Views
n	Provides an Intuitive User Interface
n	Custom Editing Dialogs
n	Multi-selection Editing

SNAP 2 15 06.indd 1 2/21/06 11:33:47 AM

